(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0')) → 0'
log(s(s(X))) → s(log(s(quot(X, s(s(0'))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
quot,
logThey will be analysed ascendingly in the following order:
min < quot
quot < log
(6) Obligation:
TRS:
Rules:
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
log(
s(
0')) →
0'log(
s(
s(
X))) →
s(
log(
s(
quot(
X,
s(
s(
0'))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
min, quot, log
They will be analysed ascendingly in the following order:
min < quot
quot < log
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
min(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)
Induction Step:
min(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
log(
s(
0')) →
0'log(
s(
s(
X))) →
s(
log(
s(
quot(
X,
s(
s(
0'))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
quot, log
They will be analysed ascendingly in the following order:
quot < log
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(11) Obligation:
TRS:
Rules:
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
log(
s(
0')) →
0'log(
s(
s(
X))) →
s(
log(
s(
quot(
X,
s(
s(
0'))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
log
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol log.
(13) Obligation:
TRS:
Rules:
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
log(
s(
0')) →
0'log(
s(
s(
X))) →
s(
log(
s(
quot(
X,
s(
s(
0'))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
log(
s(
0')) →
0'log(
s(
s(
X))) →
s(
log(
s(
quot(
X,
s(
s(
0'))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
log :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)